Nonlinear Fiber Optics for Bio-Imaging

نویسنده

  • Roque Gagliano Molla
چکیده

Two-photon excitation (TPE) is a modern technology with applications in microscopy and spectroscopy that has gained a great amount of attention in recent years. This technique is the best suitable to analyze thick tissues and live animals as it works in the near-infrared (NIR) region. In this work we implement and evaluate a two-photon setup that allows the shifting of the working wavelength over a wide range using the soliton self-frequency shift (SSFS) effect. The shifter is implemented using a pulsed fiber laser and a photonic crystal fiber (PCF). We also include a numerical evaluation of the dependency of the fiber shift on the input average power and the fiber length. A semi-analytical model is proposed to investigate the characteristics of the SSFS in optical fibers. SSFS in two different types of fibers were evaluated and the results agree very well with those of numerical simulations. We show that when the frequency shift is small enough, it is inversely proportional to the fourth power of the initial soliton pulse width. However, with large frequency shift, this fourth power rule needs to be modified. We finally show the first two-photon images obtained at the University of Kansas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supercontinuum Generation in a Highly Nonlinear Chalcogenide/ MgF2 Hybrid Photonic Crystal Fiber

In this paper, we report the numerical analysis of a photonic crystal fiber (PCF) for generating an efficient supercontinuum medium. For our computational studies, the core of the proposed structure is made up of As2Se3 and the cladding structure consists of an inner ring of holes made up As2Se3 and four outer rings of air holes in MgF2. The proposed structure provides excellent nonlinear coeff...

متن کامل

Synthesis of TiO2-ZnO-ZrO2 Nanocomposites for Nonlinear Optics Applications

A sol-gel technique under ultrasonic irradiation was applied to synthesize ZrO2/TiO2/ZnOnanocomposites. X-ray diffraction analysis confirmed the successful synthesis of nanocomposites. The strain and crystalline size values of ZrO2/TiO2/ZnO nanocomposites are estimated to be 9.98×10-4 and 17.66 nm, respectively. The linear absorption coefficient of ZrO2/TiO2/ZnO nanocomposites was measure...

متن کامل

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Unique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating

In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...

متن کامل

Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection.

Nonlinear microscopy techniques crucially rely on efficient signal detection. Here, we present a ring of large-core optical fibers for epi-collection of fluorescence photons that are not transmitted through the objective and thus normally wasted. Theoretical treatments indicated that such a supplementary fiber-optic light collection system (SUFICS) can provide an up to 4-fold signal gain. In ty...

متن کامل

Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation.

A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005